
SÉANCE 1

Mise à niveau "pro" & Outillage qualité

C Avancé - Master 2

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 1

mailto:r.bourebaba@ynov.com

 Changelog — V0.0.2

01/02/2026 18:03 — Ajout de corrections et clarifications : procédures d'installation (gdb, valgrind, cppcheck),
exemples de debug, petites améliorations de mise en page.

Mise à jour de la version du deck et synchronisation avec les autres slides mis à jour.

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 2

mailto:r.bourebaba@ynov.com

 Objectifs de la séance

Renforcer les bases "professionnelles"

Build multi-configuration

Arborescence projet

Tests unitaires & coverage

Prendre en main les outils de qualité

Sanitizers (ASan, UBSan)

Valgrind

Profiling de base

Asseoir une culture d'ingénierie qualité dès le départ

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 3

mailto:r.bourebaba@ynov.com

 Compétences visées

 Maîtriser CMake moderne (approche par targets)
 Structurer un projet C professionnel
 Écrire et exécuter des tests unitaires
 Mesurer la couverture de code
 Détecter les bugs mémoire et comportements indéfinis
 Utiliser Git avec hooks pour automatiser la qualité

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 4

mailto:r.bourebaba@ynov.com

 Arborescence projet professionnelle

mon-projet/
├── CMakeLists.txt
├── README.md
├── .gitignore
├── .git/
│ └── hooks/
├── src/
│ ├── main.c
│ └── module.c
├── include/
│ └── module.h
├── tests/
│ ├── test_module.c
│ └── CMakeLists.txt
└── build/
 ├── debug/
 └── release/

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 5

mailto:r.bourebaba@ynov.com

 CMake moderne : approche par targets

Ancienne méthode (à éviter)

include_directories(${PROJECT_SOURCE_DIR}/include)
add_executable(mon_app main.c module.c)

Méthode moderne

add_library(mon_module STATIC src/module.c)
target_include_directories(mon_module PUBLIC include)

add_executable(mon_app src/main.c)
target_link_libraries(mon_app PRIVATE mon_module)

Avantage : propagation automatique des dépendances

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 6

mailto:r.bourebaba@ynov.com

 CMakeLists.txt - Structure minimale

cmake_minimum_required(VERSION 3.20)
project(MonProjet C)

set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED ON)

Options de compilation
set(CMAKE_C_FLAGS_DEBUG "-g -O0 -Wall -Wextra")
set(CMAKE_C_FLAGS_RELEASE "-O3 -DNDEBUG")

Bibliothèque
add_library(mon_module STATIC src/module.c)
target_include_directories(mon_module PUBLIC include)

Exécutable
add_executable(mon_app src/main.c)
target_link_libraries(mon_app PRIVATE mon_module)

Tests (si activés)
if(BUILD_TESTING)
 enable_testing()
 add_subdirectory(tests)
endif()

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 7

mailto:r.bourebaba@ynov.com

 Build multi-configuration

Configuration Debug
cmake -B build/debug -DCMAKE_BUILD_TYPE=Debug
cmake --build build/debug

Configuration Release
cmake -B build/release -DCMAKE_BUILD_TYPE=Release
cmake --build build/release

Avec Sanitizers
cmake -B build/asan -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_C_FLAGS="-fsanitize=address,undefined"
cmake --build build/asan

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 8

mailto:r.bourebaba@ynov.com

 Tests unitaires - Framework Unity

Installation Unity (exemple)

git clone https://github.com/ThrowTheSwitch/Unity.git extern/Unity

Test simple

#include "unity.h"
#include "module.h"

void setUp(void) { /* Init avant chaque test */ }
void tearDown(void) { /* Nettoyage après chaque test */ }

void test_addition(void) {
 TEST_ASSERT_EQUAL_INT(4, add(2, 2));
}

int main(void) {
 UNITY_BEGIN();
 RUN_TEST(test_addition);
 return UNITY_END();
}

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 9

mailto:r.bourebaba@ynov.com

 Tests unitaires - Framework CUnit

Structure d'un test CUnit

#include <CUnit/CUnit.h>
#include <CUnit/Basic.h>
#include "module.h"

void test_multiplication(void) {
 CU_ASSERT_EQUAL(multiply(3, 4), 12);
 CU_ASSERT_NOT_EQUAL(multiply(2, 2), 5);
}

int main() {
 CU_initialize_registry();

 CU_pSuite suite = CU_add_suite("Suite_Module", NULL, NULL);
 CU_add_test(suite, "test_multiplication", test_multiplication);

 CU_basic_run_tests();
 CU_cleanup_registry();
 return 0;
}

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 10

mailto:r.bourebaba@ynov.com

 Coverage avec gcov/lcov

CMakeLists.txt pour coverage

option(ENABLE_COVERAGE "Enable coverage reporting" OFF)

if(ENABLE_COVERAGE)
 set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} --coverage")
 set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} --coverage")
endif()

Génération du rapport

Build avec coverage
cmake -B build/coverage -DENABLE_COVERAGE=ON
cmake --build build/coverage

Exécuter les tests
./build/coverage/tests/test_module

Générer rapport HTML
lcov --capture --directory build/coverage --output-file coverage.info
genhtml coverage.info --output-directory coverage_html

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 11

mailto:r.bourebaba@ynov.com

 AddressSanitizer (ASan)

Détecte :

Débordements de buffer (heap, stack, global)

Use-after-free

Use-after-return

Fuites mémoire (avec ASAN_OPTIONS=detect_leaks=1)

Activation

cmake -B build/asan -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_C_FLAGS="-fsanitize=address -fno-omit-frame-pointer -g"
cmake --build build/asan

Exemple de détection

int* ptr = malloc(sizeof(int) * 10);
free(ptr);
ptr[0] = 42; // ASan détecte use-after-free

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 12

mailto:r.bourebaba@ynov.com

 UndefinedBehaviorSanitizer (UBSan)

Détecte :

Débordements d'entiers signés

Division par zéro

Décalages invalides

Conversions invalides

Déréférencement de pointeur null

Activation

cmake -B build/ubsan -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_C_FLAGS="-fsanitize=undefined -fno-omit-frame-pointer -g"
cmake --build build/ubsan

Exemple

int x = INT_MAX;
x = x + 1; // UBSan détecte le débordement

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 13

mailto:r.bourebaba@ynov.com

 Combinaison de Sanitizers

ASan + UBSan ensemble
cmake -B build/sanitizers -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_C_FLAGS="-fsanitize=address,undefined -fno-omit-frame-pointer -g"
cmake --build build/sanitizers

Exécution avec options
ASAN_OPTIONS=detect_leaks=1:halt_on_error=0 \
UBSAN_OPTIONS=print_stacktrace=1 \
 ./build/sanitizers/mon_app

 Note : ThreadSanitizer (TSan) incompatible avec ASan/MSan

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 14

mailto:r.bourebaba@ynov.com

 Valgrind - Memcheck

Détecte :

Fuites mémoire

Accès à mémoire non initialisée

Débordements de buffer

Double free

Utilisation basique

valgrind --leak-check=full \
 --show-leak-kinds=all \
 --track-origins=yes \
 --verbose \
 ./mon_app

Avantages vs ASan

Pas de recompilation nécessaire

Plus lent mais plus exhaustif

Meilleure détection de mémoire non initialisée

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 15

mailto:r.bourebaba@ynov.com

 Profiling de base - gprof

Compilation avec profiling

gcc -pg -O2 src/main.c src/module.c -o mon_app

Exécution et analyse

Exécuter le programme (génère gmon.out)
./mon_app

Analyser les résultats
gprof mon_app gmon.out > analysis.txt

Vue condensée
gprof -b mon_app gmon.out

Alternative moderne : perf (Linux), Instruments (macOS)

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 16

mailto:r.bourebaba@ynov.com

 Profiling avec perf (Linux)

Enregistrer l'exécution
perf record -g ./mon_app

Rapport interactif
perf report

Rapport simple
perf report --stdio

Statistiques
perf stat ./mon_app

Métriques : cycles CPU, cache misses, branch mispredictions, etc.

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 17

mailto:r.bourebaba@ynov.com

 Git - Hooks pour automatisation

pre-commit hook

#!/bin/bash
.git/hooks/pre-commit

Vérifier le formatage
clang-format --dry-run --Werror src/*.c include/*.h || exit 1

Lancer les tests
cmake --build build/debug
./build/debug/tests/test_module || exit 1

echo " Pre-commit checks passed"

Installation

chmod +x .git/hooks/pre-commit

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 18

mailto:r.bourebaba@ynov.com

 Git - Hook pre-push

#!/bin/bash
.git/hooks/pre-push

Build release
cmake -B build/release -DCMAKE_BUILD_TYPE=Release
cmake --build build/release || exit 1

Tests avec sanitizers
cmake -B build/asan -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_C_FLAGS="-fsanitize=address,undefined"
cmake --build build/asan || exit 1
./build/asan/tests/test_module || exit 1

Vérifier coverage minimale
./scripts/check_coverage.sh 80 || exit 1

echo " Pre-push checks passed"

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 19

mailto:r.bourebaba@ynov.com

 TP - Partie 1 : Initialisation

Tâches :

1. Créer l'arborescence projet (src, include, tests)

2. Initialiser un dépôt Git

3. Créer .gitignore approprié

4. Écrire un CMakeLists.txt minimal avec targets

5. Implémenter une fonction simple dans module.c

6. Créer un main.c qui utilise cette fonction

Livrable : Projet qui compile en Debug et Release

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 20

mailto:r.bourebaba@ynov.com

 TP - Partie 2 : Tests & Coverage

Tâches :

1. Ajouter Unity ou CUnit au projet

2. Créer tests/CMakeLists.txt

3. Écrire 3 tests unitaires minimum

4. Configurer la coverage (gcov/lcov)

5. Générer un rapport HTML de coverage

6. Atteindre au moins 80% de couverture

Livrable : Rapport coverage_html avec ≥80%

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 21

mailto:r.bourebaba@ynov.com

 TP - Partie 3 : Sanitizers

Tâches :

1. Créer un programme avec bugs volontaires :

Buffer overflow (stack)

Use-after-free

Integer overflow signé

Division par zéro

2. Compiler avec ASan et UBSan

3. Détecter et corriger chaque bug

4. Documenter les corrections

Livrable : Code bugué + version corrigée + rapport

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 22

mailto:r.bourebaba@ynov.com

 TP - Partie 4 : Valgrind

Tâches :

1. Créer un programme avec fuites mémoire variées

2. Analyser avec Valgrind

3. Corriger toutes les fuites

4. Vérifier avec --leak-check=full

Bonus : Comparer les résultats ASan vs Valgrind

Livrable : Sortie Valgrind sans erreur

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 23

mailto:r.bourebaba@ynov.com

 TP - Partie 5 : Git Hooks

Tâches :

1. Créer un hook pre-commit qui :

Vérifie le formatage (optionnel : clang-format)

Lance les tests unitaires

Bloque le commit si échec

2. Créer un hook pre-push qui :

Build en release

Lance tests avec ASan/UBSan

Vérifie la coverage minimale

Livrable : Hooks fonctionnels et testés

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 24

mailto:r.bourebaba@ynov.com

 Évaluation

Critères

Repository Git (20%)

Structure propre, .gitignore, commits cohérents

Build & Configuration (20%)

CMake targets, multi-config (Debug/Release)

Tests & Coverage (25%)

Tests unitaires fonctionnels, coverage ≥80%

Sanitizers & Valgrind (25%)

Détection et correction des bugs

QCM + Revue de code (10%)

Connaissances théoriques, pair review

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 25

mailto:r.bourebaba@ynov.com

 QCM - Exemples de questions

1. Quelle option CMake active les symboles de debug ?

A) -DCMAKE_DEBUG=ON

B) -DCMAKE_BUILD_TYPE=Debug

C) -DDEBUG_MODE=1

2. Quel sanitizer détecte les débordements d'entiers signés ?

A) AddressSanitizer

B) UndefinedBehaviorSanitizer

C) ThreadSanitizer

3. Quelle commande génère un rapport de coverage HTML ?

A) gcov --html

B) genhtml coverage.info

C) lcov --output-html

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 26

mailto:r.bourebaba@ynov.com

 Revue de code par les pairs

Process

1. Pull Request interne : chaque binôme crée une PR

2. Review : un autre binôme fait la revue

3. Critères de review :

Lisibilité du code

Tests pertinents

Gestion mémoire correcte

Structure CMake propre

4. Approbation : corrections puis merge

Objectif : Simuler un workflow professionnel

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 27

mailto:r.bourebaba@ynov.com

 Matériel nécessaire

Logiciels requis

Compilateur : GCC ≥9 ou Clang ≥10

Build system : CMake ≥3.20

Contrôle version : Git

Coverage : gcov, lcov

Analyse mémoire : Valgrind

IDE : VS Code (recommandé)

Extensions VS Code utiles

C/C++ (Microsoft)

CMake Tools

GitLens

Test Explorer

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 28

mailto:r.bourebaba@ynov.com

 Bonnes pratiques à retenir

1. Séparez les configurations : Debug, Release, ASan, Coverage

2. Testez tôt, testez souvent : TDD ou au moins tests réguliers

3. Automatisez : Hooks Git, CI/CD

4. Mesurez : Coverage, profiling, Valgrind

5. Documentez : README, commentaires, rapports

6. Revoyez : Code review systématique

Culture qualité = Gain de temps à long terme

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 29

mailto:r.bourebaba@ynov.com

 Ressources complémentaires

Documentation officielle

CMake : https://cmake.org/cmake/help/latest/

Unity : https://github.com/ThrowTheSwitch/Unity

Sanitizers : https://github.com/google/sanitizers

Valgrind : https://valgrind.org/docs/manual/

Tutoriels

Modern CMake : https://cliutils.gitlab.io/modern-cmake/

GDB/Valgrind : https://sourceware.org/gdb/documentation/

Livres

"Test Driven Development for Embedded C" - James Grenning

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 30

https://cmake.org/cmake/help/latest/
https://github.com/ThrowTheSwitch/Unity
https://github.com/google/sanitizers
https://valgrind.org/docs/manual/
https://cliutils.gitlab.io/modern-cmake/
https://sourceware.org/gdb/documentation/
mailto:r.bourebaba@ynov.com

 Objectifs pour la prochaine séance

Maîtrise complète de la chaîne qualité

Tests automatisés fonctionnels

Détection proactive des bugs

Workflow Git professionnel

Préparez vos questions !

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 31

mailto:r.bourebaba@ynov.com

 Questions ?

N'hésitez pas à demander des clarifications

 Contact enseignant
 Dépôt du cours : [à compléter]
 Forum / Discord : [à compléter]

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 32

mailto:r.bourebaba@ynov.com

Merci !

Bon courage pour le TP !

Rappel : La qualité du code se construit dès le premier commit.

C Avancé M2 - Séance 1

Mise à niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 33

mailto:r.bourebaba@ynov.com

