C Avancé M2 - Séance 1

SEANCE 1

Mise a niveau "pro" & Outillage qualité

C Avancé - Master 2

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

~ Changelog — V0.0.2

» 01/02/2026 18:03 — Ajout de corrections et clarifications : procédures d'installation (gdb, valgrind, cppcheck),
exemples de debug, petites ameéliorations de mise en page.

e Mise a jour de la version du deck et synchronisation avec les autres slides mis a jour.

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Objectifs de la séance

e Renforcer les bases "professionnelles"

o Build multi-configuration
o Arborescence projet
o Tests unitaires & coverage

e Prendre en main les outils de qualité

o Sanitizers (ASan, UBSan)
o Valgrind
o Profiling de base

e Asseoir une culture d'ingénierie qualité dés le départ

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

@ Compétences visées

Maitriser CMake moderne (approche par targets)
Structurer un projet C professionnel

Ecrire et exécuter des tests unitaires

Mesurer la couverture de code

Détecter les bugs mémoire et comportements indéfinis
Utiliser Git avec hooks pour automatiser la qualité

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

B2 Arborescence projet professionnelle

mon-projet/

— CMakeLists.txt
—— README . md

— .gitignore

— .git/

L— hooks/

— src/

— main.c

— module.c

— include/

L— module.h

— tests/

— test _module.c
— (CMakelLists.txt
— build/

— debug/

— release/

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

“. CMake moderne : approche par targets

Ancienne méthode (a éviter)

include_directories(${PROJECT_SOURCE_DIR}/include)
add_executable(mon_app main.c module.c)

Méthode moderne

add library(mon_module STATIC src/module.c)
target_include_directories(mon_module PUBLIC include)

add_executable(mon_app src/main.c)
target_link_libraries(mon_app PRIVATE mon_module)

Avantage : propagation automatique des dépendances

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

W CMakelists.txt - Structure minimale

cmake_minimum_required(VERSION 3.20)
project(MonProjet C)

set (CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD REQUIRED ON)

Options de compilation
set (CMAKE_C_FLAGS_DEBUG "-g -00 -Wall -Wextra")
set(CMAKE_C_FLAGS_RELEASE "-03 -DNDEBUG")

Bibliotheque
add_library(mon_module STATIC src/module.c)
target_include_directories(mon_module PUBLIC include)

Exécutable
add _executable(mon_app src/main.c)
target_link_libraries(mon_app PRIVATE mon_module)

Tests (si activés)
if(BUILD_TESTING)
enable testing()
add_subdirectory(tests)
endif()

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

A Build multi-configuration

Configuration Debug

cmake -B build/debug -DCMAKE_BUILD_TYPE=Debug
cmake --build build/debug

Configuration Release

cmake -B build/release -DCMAKE BUILD TYPE=Release
cmake --build build/release

Avec Sanitizers

cmake -B build/asan -DCMAKE BUILD TYPE=Debug \
-DCMAKE_C_FLAGS="-fsanitize=address,undefined"
cmake --build build/asan

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Tests unitaires - Framework Unity

Installation Unity (exemple)

git clone https://github.com/ThrowTheSwitch/Unity.git extern/Unity

Test simple

#include "unity.h"
#include "module.h"

void setUp(void) { /* Init avant chaque test */ }
void tearDown(void) { /* Nettoyage aprés chaque test */ }

void test addition(void) {
TEST_ASSERT_EQUAL_INT(4, add(2, 2));
}

int main(void) {
UNITY BEGIN();
RUN_TEST(test_addition);
return UNITY_END();

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Tests unitaires - Framework CUnit

Structure d'un test CUnit

#include <CUnit/CUnit.h>
#include <CUnit/Basic.h>
#include "module.h"

void test _multiplication(void) {
CU_ASSERT_EQUAL (multiply(3, 4), 12);
CU_ASSERT_NOT_EQUAL (multiply(2, 2), 5);
}

int main() {
CU initialize registry();

CU pSuite suite = CU _add suite("Suite_Module"™, NULL, NULL);
CU_add_test(suite, "test multiplication", test multiplication);

CU basic_run_tests();

CU cleanup_registry();
return 0;

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

10

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

ul Coverage avec gcov/lcov

CMakelLists.txt pour coverage

option(ENABLE_COVERAGE "Enable coverage reporting" OFF)

if (ENABLE_COVERAGE)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} --coverage")

set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} --coverage")
endif()

Génération du rapport

Build avec coverage

cmake -B build/coverage -DENABLE_COVERAGE=ON
cmake --build build/coverage

Exécuter les tests
./build/coverage/tests/test _module

Générer rapport HTML

lcov --capture --directory build/coverage --output-file coverage.info
genhtml coverage.info --output-directory coverage html

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

11

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

O, AddressSanitizer (ASan)

Détecte :

e Débordements de buffer (heap, stack, global)
o Use-after-free

e Use-after-return
e Fuites mémoire (avec ASAN OPTIONS=detect leaks=1)

Activation

cmake -B build/asan -DCMAKE_BUILD_TYPE=Debug \
-DCMAKE_C_FLAGS="-fsanitize=address -fno-omit-frame-pointer -g"
cmake --build build/asan

Exemple de détection

int* ptr = malloc(sizeof(int) * 10);
free(ptr);
ptr[0] = 42; // X ASan détecte use-after-free

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

12

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

O, UndefinedBehaviorSanitizer (UBSan)

Détecte :

Débordements d'entiers signés
Division par zéro

Décalages invalides

Conversions invalides
Déréférencement de pointeur null

Activation

cmake -B build/ubsan -DCMAKE BUILD TYPE=Debug \

-DCMAKE_C_FLAGS="-fsanitize=undefined -fno-omit-frame-pointer -g"
cmake --build build/ubsan

Exemple

int x = INT_MAX;
X =x + 1; // X UBSan détecte le débordement

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

13

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

O, Combinaison de Sanitizers

ASan + UBSan ensemble

cmake -B build/sanitizers -DCMAKE BUILD TYPE=Debug \
-DCMAKE_C_FLAGS="-fsanitize=address,undefined -fno-omit-frame-pointer -g"

cmake --build build/sanitizers

Exécution avec options
ASAN OPTIONS=detect_leaks=1:halt_on_error=0 \

UBSAN OPTIONS=print_stacktrace=1 \
./build/sanitizers/mon_app

I. Note : ThreadSanitizer (TSan) incompatible avec ASan/MSan

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

14

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

*+ Valgrind - Memcheck

Détecte :

Fuites mémoire

Acces a mémoire non initialisée
Débordements de buffer
Double free

Utilisation basique

valgrind --leak-check=full \
--show-leak-kinds=all \
--track-origins=yes \
--verbose \
./mon_app

Avantages vs ASan

e Pas de recompilation nécessaire
e Plus lent mais plus exhaustif
e Meilleure détection de mémoire non initialisée

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

15

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

ul Profiling de base - gprof

Compilation avec profiling

gcc -pg -02 src/main.c src/module.c -o mon_app

Exécution et analyse

Exécuter le programme (génére gmon.out)
./mon_app

Analyser les résultats
gprof mon_app gmon.out > analysis.txt

Vue condensée
gprof -b mon_app gmon.out

Alternative moderne : perf (Linux), Instruments (macOS)

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

16

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

ul Profiling avec perf (Linux)

Enregistrer 1'exécution
perf record -g ./mon_app

Rapport interactif
perf report

Rapport simple
perf report --stdio

Statistiques
perf stat ./mon_app

Meétriques : cycles CPU, cache misses, branch mispredictions, etc.

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

17

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Git - Hooks pour automatisation

pre-commit hook

#!/bin/bash
.git/hooks/pre-commit

Vérifier le formatage
clang-format --dry-run --Werror src/*.c include/*.h || exit 1

Lancer les tests
cmake --build build/debug
./build/debug/tests/test _module || exit 1

echo "I Pre-commit checks passed”

Installation

chmod +x .git/hooks/pre-commit

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

18

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Git - Hook pre-push

#!/bin/bash
.git/hooks/pre-push

Build release
cmake -B build/release -DCMAKE BUILD TYPE=Release
cmake --build build/release || exit 1

Tests avec sanitizers

cmake -B build/asan -DCMAKE_BUILD_TYPE=Debug \
-DCMAKE_C_FLAGS="-fsanitize=address,undefined"

cmake --build build/asan || exit 1

./build/asan/tests/test_module || exit 1

Vérifier coverage minimale
./scripts/check_coverage.sh 80 || exit 1

echo "4 Pre-push checks passed"

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

19

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

% TP - Partie 1: Initialisation

Taches :

1. Créer |I'arborescence projet (src, include, tests)
2. Initialiser un dépoét Git

3. Créer .gitignore approprié

4. Ecrire un CMakelists.txt minimal avec targets
5. Implémenter une fonction simple dans module.c
6. Créer un main.c qui utilise cette fonction

Livrable : Projet qui compile en Debug et Release

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

20

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

% TP - Partie 2 : Tests & Coverage

Taches :

1. Ajouter Unity ou CUnit au projet

2. Créer tests/CMakelists.txt

3. Ecrire 3 tests unitaires minimum

4. Configurer la coverage (gcov/lcov)

5. Générer un rapport HTML de coverage
6. Atteindre au moins 80% de couverture

Livrable : Rapport coverage_html avec >80%

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

21

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

% TP - Partie 3 : Sanitizers

Taches :
1. Créer un programme avec bugs volontaires :

o Buffer overflow (stack)
o Use-after-free

o Integer overflow signe
o Division par zéro

2. Compiler avec ASan et UBSan
3. Détecter et corriger chaque bug
4. Documenter les corrections

Livrable : Code bugué + version corrigée + rapport

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

22

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

% TP - Partie 4 : Valgrind

Taches :

1. Créer un programme avec fuites mémoire variées
2. Analyser avec Valgrind

3. Corriger toutes les fuites

4. \/érifier avec --leak-check=full

Bonus : Comparer les résultats ASan vs Valgrind

Livrable : Sortie Valgrind sans erreur

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

23

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

% TP - Partie 5 : Git Hooks

Taches :
1. Créer un hook pre-commit qui:

o Vérifie le formatage (optionnel : clang-format)
o Lance les tests unitaires
o Blogue le commit si échec

2. Créer un hook pre-push qui:

o Build en release
o Lance tests avec ASan/UBSan
o Vérifie la coverage minimale

Livrable : Hooks fonctionnels et testés

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

24

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

~/ Evaluation

Critéres
Repository Git (20%)

e Structure propre, .gitignore, commits cohérents
Build & Configuration (20%)

» CMake targets, multi-config (Debug/Release)
Tests & Coverage (25%)

e Tests unitaires fonctionnels, coverage >80%
Sanitizers & Valgrind (25%)

e Détection et correction des bugs
QCM + Revue de code (10%)

e Connaissances théoriques, pair review

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

25

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

~ QCM - Exemples de questions

1. Quelle option CMake active les symboles de debug ?

o A) -DCMAKE_DEBUG=ON
o B) -DCMAKE_BUILD TYPE=Debug
o C) -DDEBUG_MODE=1

2. Quel sanitizer détecte les débordements d'entiers signés ?

o A) AddressSanitizer
o B) UndefinedBehaviorSanitizer
o C) ThreadSanitizer

3. Quelle commande génére un rapport de coverage HTML ?

o A) gcov --html
o B) genhtml coverage.info
o C) 1lcov --output-html

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

26

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

~ Revue de code par les pairs

Process
1. Pull Request interne : chaque bindme crée une PR
2. Review : un autre bindme fait la revue
3. Critéres de review :

o Lisibilité du code

o Tests pertinents

o (Gestion mémoire correcte
o Structure CMake propre

4. Approbation : corrections puis merge

Objectif : Simuler un workflow professionnel

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

27

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

&
,‘v

Matériel nécessaire

Logiciels requis

Compilateur : GCC >9 ou Clang 210
Build system : CMake >3.20
Contréle version : Git

Coverage : gcov, Icov

Analyse mémoire : Valgrind

IDE : VS Code (recommandé)

Extensions VS Code utiles

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

C/C++ (Microsoft)
CMake Tools
GitLens

Test Explorer

28

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Bonnes pratiques a retenir

1. Séparez les configurations : Debug, Release, ASan, Coverage
2. Testez tot, testez souvent : TDD ou au moins tests réguliers
3. Automatisez : Hooks Git, CI/CD

4. Mesurez : Coverage, profiling, Valgrind

5. Documentez : README, commentaires, rapports

6. Revoyez : Code review systématique

Culture qualité = Gain de temps a long terme

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

29

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

¢ Ressources complémentaires

Documentation officielle

* CMake : https://cmake.org/cmake/help/latest/

e Unity : https://github.com/ThrowTheSwitch/Unity
e Sanitizers : https://github.com/google/sanitizers
e Valgrind : https://valgrind.org/docs/manual/

Tutoriels

* Modern CMake : https://cliutils.gitlab.io/modern-cmake/
e GDB/Valgrind : https://sourceware.org/gdb/documentation/

Livres

e "Test Driven Development for Embedded C" - James Grenning

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

30

https://cmake.org/cmake/help/latest/
https://github.com/ThrowTheSwitch/Unity
https://github.com/google/sanitizers
https://valgrind.org/docs/manual/
https://cliutils.gitlab.io/modern-cmake/
https://sourceware.org/gdb/documentation/
mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

@ Obijectifs pour la prochaine séance

e Maitrise compléte de la chaine qualité
e Tests automatisés fonctionnels

e Détection proactive des bugs

o Workflow Git professionnel

Préparez vos questions !

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

31

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

? Questions ?

N'hésitez pas a demander des clarifications

> Contact enseignant
& Dépdt du cours : [& compléter]
“* Forum / Discord : [a compléter]

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 32

mailto:r.bourebaba@ynov.com

C Avancé M2 - Séance 1

Merci !

Bon courage pour le TP ! &

Rappel : La qualité du code se construit dés le premier commit.

Mise a niveau "pro" & Outillage qualité - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

33

mailto:r.bourebaba@ynov.com

