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Résumé concis des notions essentielles pour le cours
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~ Changelog — V0.0.2

e 01/02/2026 18:03 — Corrections et améliorations : ajout de diagrammes explicatifs, ajustement de leur taille
pour les slides, ajout des étapes d'installation pour GDB/Valgrind, compléments pour Makefile .

e Mise a jour de la version des decks affectés : compiler-first-c-debianl2.md , prerequis-rappels-c.md , seancel-
outillage-qualite.md .
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Types & Qualificateurs

e Types entiers: char, short, int, long, long long (signed /unsigned)
Virgule flottante: float , double

Booléen: Bool (C99)

Qualificateurs: const, volatile , static, extern

Taille dépend du compilateur — préférez sizeof ettypes fixes ( stdint.h)
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Controle & Structures

e if [ else, switch, for, while, do - while
e Toujours utiliser {} pour éviter les erreurs d'ambiguité
e enum pour états symboliques, struct pour regrouper des données
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Fonctions & Headers

e Prototypes dans .nh, définitions dans .c

e Include guards: #ifndef / #define / #endif OU #pragma once
e static pour linkage interne, inline pour optimisation

e Favoriser signatures claires et responsabilité unique
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Pointeurs & Tableaux

e Tableau décaye en pointeur; conservez la longueur séparement
e Notation: int *p, char s[], const char *msg

int a[1@0];
int *p = a; // p == &a[0]

e Attention a l'arithmétique de pointeurs et a l'aliasing
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Tableau — pointeur : explication simple

 En C, la plupart du temps un tableau utilisé dans une expression est automatiquement converti ("décaye") en
pointeur vers son premier élément. Ainsi, I'information sur la taille du tableau n'est pas propagée.

int a[1@];

int *p = a; // équivalent a &a[9]

printf("sizeof(a) = %zu, sizeof(p) = %zu\n", sizeof(a), sizeof(p));
// sizeof(a) == 10 * sizeof(int) (si utilisé dans le méme scope)
// sizeof(p) == taille d'un pointeur (ex. 8)

e Conséquence : dans une fonction void f(int *p) , on he connait pas la longueur de p — passez toujours la
size_t n en argument.

e Exceptions (pas de "décay") : sizeof(a) , I'Opérateur & (donne un int (*)[N] ) et lors de l'initialisation d'un
tableau.

e Mini-exo : que retourne sizeof(a)/sizeof a[@] VS sizeof(p)/sizeof p[@] ?
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Allocation dynamique

int *arr = malloc(n * sizeof *arr);
if (!arr) return NULL; // gérer 1l'erreur

!/ .
free(arr);

e Toujours vérifier le retour de malloc / calloc
e free() correspond a chaque malloc / calloc [/ realloc
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Compilation & Linking

o Etapes: préprocesseur — compilation — assemblage — linking
e Découplez interface ( .h ) etimpl. ( .c)
e Flags utiles: -Wall -Wextra -Werror -Wconversion -g -02
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Pipeline de compilation (diagramme)

Source .c/.h

Options

include

Preprocessor .i

Compile .s
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Undefined Behavior & Pieges courants

e Variables non initialisées, sorties hors-borne, use-after-free
e Débordement d'entiers signés = UB
e Mismatched printf format specifiers = crash / datas corruption
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Bonnes pratiques & Outils

e Activez -wall -Wextra -Werror , utilisez ASan/UBSan, Valgrind
e Tests unitaires, revue de code, CI/CD
e Documentez et écrivez des commits clairs
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Checklist rapide (avant push)

Code compile sans warnings

Tests unitaires passent

Pas de fuites détectées par Valgrind / ASan
Coverage raisonnable pour les fonctions critiques
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Exemples rapides / Mini-exercice

1. Ecrire une fonction int sum(const int *a, size t n) quirenvoie la somme d'un tableau.
2. Testez avec cas vide ( n==0 ), overflow possible (attention au type)
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Pointeurs avances

e Pointeur vers pointeur, const -correctness et ownership

/* const correctness */
void foo(const int *p); // ne modifie pas *p
void bar(int * const p); // p ne change pas, *p peut changer

/* Pointeur vers pointeur : créer une chaine dupliquée */
char *strdup_safe(const char *s) {

if (!s) return NULL;

size_ t n = strlen(s) + 1;

char *d = malloc(n);

if (!d) return NULL;

memcpy(d, s, n);

return d; // ownership transferred to caller
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Allocation sécurisée & realloc

* Ne pas perdre le pointeur original si realloc échoue

void *safe_realloc(void *ptr, size_t new_size) {
void *tmp = realloc(ptr, new_size);
if (ttmp) {
// realloc failed, original ptr still valid
return NULL;

}

return tmp;

}

/* Utilisation */
int *arr = malloc(n * sizeof *arr);
int *tmp = safe_realloc(arr, (n2) * sizeof *arr);

if (ttmp) {

free(arr); // gérer 1l'erreur
} else {

arr = tmp;
}
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Gestion d'erreurs (pattern goto cleanup)

e Utiliser un point de sortie unique pour libérer les ressources

int do _work(void) {
int ret = -1;
char *buf = NULL;
FILE *f = NULL;

buf = malloc(1024);
if (!buf) goto out;

f = fopen("data.bin", "rb");
if (!f) goto out;

// ... traiter
ret = @; // succes

out:
if (f) fclose(f);
free(buf);
return ret;
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Chaines & securite

e Préférer snprintf, strnlen, memmove a strcpy/strcat

char dst[32];
int n = snprintf(dst, sizeof dst, "%s %d", name, value);
if (n < @ || (size_t)n >= sizeof dst) {

// erreur ou troncature

}

/* memmove pour zones qui se chevauchent */
memmove(dst + 2, dst, 10);
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Exemple : somme sure (détection d'overflow)

e Accumuler dans un type plus large et vérifier

#include <stdint.h>
#include <limits.h>

bool sum_safe(const int *a, size t n, int *out) {
if (!a || 'out) return false;
int64_t acc = 0;
for (size t i =0; i < n; ++i) {
acc += (int64_t)a[i];
if (acc > INT_MAX || acc < INT_MIN) return false; // overflow
}
*out = (int)acc;
return true;
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Tests rapides (assert / Unity)

e Exemple minimal avec assert

#include <assert.h>

void test sum(void) {

int a[] = {1,2,3};

int out;

assert(sum_safe(a, 3, &out) && out == 6);
}

int main(void) { test_sum(); return 0; }
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Besoin d'exemples detailles ?

Propose si tu veux des slides supplémentaires : pointeurs avancés, gestion d'erreurs, patterns mémoire.
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