
 Prérequis & Rappels — Langage C
class: lead

Résumé concis des notions essentielles pour le cours

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 1

mailto:r.bourebaba@ynov.com

 Changelog — V0.0.2

01/02/2026 18:03 — Corrections et améliorations : ajout de diagrammes explicatifs, ajustement de leur taille
pour les slides, ajout des étapes d'installation pour GDB/Valgrind, compléments pour Makefile .

Mise à jour de la version des decks affectés : compiler-first-c-debian12.md , prerequis-rappels-c.md , seance1-
outillage-qualite.md .

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 2

mailto:r.bourebaba@ynov.com

Types & Qualificateurs

Types entiers: char , short , int , long , long long (signed / unsigned)

Virgule flottante: float , double

Booléen: _Bool (C99)

Qualificateurs: const , volatile , static , extern

Taille dépend du compilateur — préférez sizeof et types fixes (stdint.h)

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 3

mailto:r.bourebaba@ynov.com

Contrôle & Structures

if / else , switch , for , while , do - while

Toujours utiliser {} pour éviter les erreurs d'ambiguïté
enum pour états symboliques, struct pour regrouper des données

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 4

mailto:r.bourebaba@ynov.com

Fonctions & Headers

Prototypes dans .h , définitions dans .c

Include guards: #ifndef / #define / #endif ou #pragma once

static pour linkage interne, inline pour optimisation

Favoriser signatures claires et responsabilité unique

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 5

mailto:r.bourebaba@ynov.com

Pointeurs & Tableaux

Tableau décaye en pointeur; conservez la longueur séparément

Notation: int *p , char s[] , const char *msg

int a[10];
int *p = a; // p == &a[0]

Attention à l'arithmétique de pointeurs et à l'aliasing

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 6

mailto:r.bourebaba@ynov.com

Tableau → pointeur : explication simple

En C, la plupart du temps un tableau utilisé dans une expression est automatiquement converti ("décaye") en
pointeur vers son premier élément. Ainsi, l'information sur la taille du tableau n'est pas propagée.

int a[10];
int *p = a; // équivalent à &a[0]
printf("sizeof(a) = %zu, sizeof(p) = %zu\n", sizeof(a), sizeof(p));
// sizeof(a) == 10 * sizeof(int) (si utilisé dans le même scope)
// sizeof(p) == taille d'un pointeur (ex. 8)

Conséquence : dans une fonction void f(int *p) , on ne connaît pas la longueur de p → passez toujours la
size_t n en argument.

Exceptions (pas de "décay") : sizeof(a) , l'opérateur &a (donne un int (*)[N]) et lors de l'initialisation d'un
tableau.

Mini-exo : que retourne sizeof(a)/sizeof a[0] vs sizeof(p)/sizeof p[0] ?

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 7

mailto:r.bourebaba@ynov.com

Allocation dynamique

int *arr = malloc(n * sizeof *arr);
if (!arr) return NULL; // gérer l'erreur
// ...
free(arr);

Toujours vérifier le retour de malloc / calloc

free() correspond à chaque malloc / calloc / realloc

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 8

mailto:r.bourebaba@ynov.com

Compilation & Linking

Étapes: préprocesseur → compilation → assemblage → linking

Découplez interface (.h) et impl. (.c)

Flags utiles: -Wall -Wextra -Werror -Wconversion -g -O2

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 9

mailto:r.bourebaba@ynov.com

Pipeline de compilation (diagramme)

Options

includeSource .c/.h

Preprocessor .i

Compile .s

Assemble .o
Link -> Executable /

Shared lib

-S

-c

-E

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 10

mailto:r.bourebaba@ynov.com

Undefined Behavior & Pièges courants

Variables non initialisées, sorties hors-borne, use-after-free

Débordement d'entiers signés = UB

Mismatched printf format specifiers => crash / datas corruption

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 11

mailto:r.bourebaba@ynov.com

Bonnes pratiques & Outils

Activez -Wall -Wextra -Werror , utilisez ASan/UBSan, Valgrind

Tests unitaires, revue de code, CI/CD

Documentez et écrivez des commits clairs

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 12

mailto:r.bourebaba@ynov.com

Checklist rapide (avant push)

Code compile sans warnings

Tests unitaires passent

Pas de fuites détectées par Valgrind / ASan

Coverage raisonnable pour les fonctions critiques

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 13

mailto:r.bourebaba@ynov.com

Exemples rapides / Mini-exercice

1. Écrire une fonction int sum(const int *a, size_t n) qui renvoie la somme d'un tableau.

2. Testez avec cas vide (n==0), overflow possible (attention au type)

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 14

mailto:r.bourebaba@ynov.com

Pointeurs avancés

Pointeur vers pointeur, const -correctness et ownership

/* const correctness */
void foo(const int *p); // ne modifie pas *p
void bar(int * const p); // p ne change pas, *p peut changer

/* Pointeur vers pointeur : créer une chaîne dupliquée */
char *strdup_safe(const char *s) {
 if (!s) return NULL;
 size_t n = strlen(s) + 1;
 char *d = malloc(n);
 if (!d) return NULL;
 memcpy(d, s, n);
 return d; // ownership transferred to caller
}

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 15

mailto:r.bourebaba@ynov.com

Allocation sécurisée & realloc

Ne pas perdre le pointeur original si realloc échoue

void *safe_realloc(void *ptr, size_t new_size) {
 void *tmp = realloc(ptr, new_size);
 if (!tmp) {
 // realloc failed, original ptr still valid
 return NULL;
 }
 return tmp;
}

/* Utilisation */
int *arr = malloc(n * sizeof *arr);
int *tmp = safe_realloc(arr, (n2) * sizeof *arr);
if (!tmp) {
 free(arr); // gérer l'erreur
} else {
 arr = tmp;
}

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 16

mailto:r.bourebaba@ynov.com

Gestion d'erreurs (pattern goto cleanup)

Utiliser un point de sortie unique pour libérer les ressources

int do_work(void) {
 int ret = -1;
 char *buf = NULL;
 FILE *f = NULL;

 buf = malloc(1024);
 if (!buf) goto out;

 f = fopen("data.bin", "rb");
 if (!f) goto out;

 // ... traiter
 ret = 0; // succès

out:
 if (f) fclose(f);
 free(buf);
 return ret;
}

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 17

mailto:r.bourebaba@ynov.com

Chaînes & sécurité

Préférer snprintf , strnlen , memmove à strcpy/strcat

char dst[32];
int n = snprintf(dst, sizeof dst, "%s %d", name, value);
if (n < 0 || (size_t)n >= sizeof dst) {
 // erreur ou troncature
}

/* memmove pour zones qui se chevauchent */
memmove(dst + 2, dst, 10);

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 18

mailto:r.bourebaba@ynov.com

Exemple : somme sûre (détection d'overflow)

Accumuler dans un type plus large et vérifier

#include <stdint.h>
#include <limits.h>

bool sum_safe(const int *a, size_t n, int *out) {
 if (!a || !out) return false;
 int64_t acc = 0;
 for (size_t i = 0; i < n; ++i) {
 acc += (int64_t)a[i];
 if (acc > INT_MAX || acc < INT_MIN) return false; // overflow
 }
 *out = (int)acc;
 return true;
}

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 19

mailto:r.bourebaba@ynov.com

Tests rapides (assert / Unity)

Exemple minimal avec assert

#include <assert.h>

void test_sum(void) {
 int a[] = {1,2,3};
 int out;
 assert(sum_safe(a, 3, &out) && out == 6);
}

int main(void) { test_sum(); return 0; }

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 20

mailto:r.bourebaba@ynov.com

Besoin d'exemples détaillés ?
Propose si tu veux des slides supplémentaires : pointeurs avancés, gestion d'erreurs, patterns mémoire.

Prérequis & Rappels — Langage C

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 21

mailto:r.bourebaba@ynov.com

