Prérequis & Rappels — Langage C

Prérequis & Rappels — Langage C

class: lead

Résumé concis des notions essentielles pour le cours

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

~ Changelog — V0.0.2

e 01/02/2026 18:03 — Corrections et améliorations : ajout de diagrammes explicatifs, ajustement de leur taille
pour les slides, ajout des étapes d'installation pour GDB/Valgrind, compléments pour Makefile .

e Mise a jour de la version des decks affectés : compiler-first-c-debianl2.md , prerequis-rappels-c.md , seancel-
outillage-qualite.md .

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Types & Qualificateurs

e Types entiers: char, short, int, long, long long (signed /unsigned)
Virgule flottante: float , double

Booléen: Bool (C99)

Qualificateurs: const, volatile , static, extern

Taille dépend du compilateur — préférez sizeof ettypes fixes (stdint.h)

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Controle & Structures

e if [else, switch, for, while, do - while
e Toujours utiliser {} pour éviter les erreurs d'ambiguité
e enum pour états symboliques, struct pour regrouper des données

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Fonctions & Headers

e Prototypes dans .nh, définitions dans .c

e Include guards: #ifndef / #define / #endif OU #pragma once
e static pour linkage interne, inline pour optimisation

e Favoriser signatures claires et responsabilité unique

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Pointeurs & Tableaux

e Tableau décaye en pointeur; conservez la longueur séparement
e Notation: int *p, char s[], const char *msg

int a[1@0];
int *p = a; // p == &a[0]

e Attention a l'arithmétique de pointeurs et a l'aliasing

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Tableau — pointeur : explication simple

 En C, la plupart du temps un tableau utilisé dans une expression est automatiquement converti ("décaye") en
pointeur vers son premier élément. Ainsi, I'information sur la taille du tableau n'est pas propagée.

int a[1@];

int *p = a; // équivalent a &a[9]

printf("sizeof(a) = %zu, sizeof(p) = %zu\n", sizeof(a), sizeof(p));
// sizeof(a) == 10 * sizeof(int) (si utilisé dans le méme scope)
// sizeof(p) == taille d'un pointeur (ex. 8)

e Conséquence : dans une fonction void f(int *p) , on he connait pas la longueur de p — passez toujours la
size_t n en argument.

e Exceptions (pas de "décay") : sizeof(a) , I'Opérateur & (donne un int (*)[N]) et lors de l'initialisation d'un
tableau.

e Mini-exo : que retourne sizeof(a)/sizeof a[@] VS sizeof(p)/sizeof p[@] ?

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Allocation dynamique

int *arr = malloc(n * sizeof *arr);
if (!arr) return NULL; // gérer 1l'erreur

!/ .
free(arr);

e Toujours vérifier le retour de malloc / calloc
e free() correspond a chaque malloc / calloc [/ realloc

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Compilation & Linking

o Etapes: préprocesseur — compilation — assemblage — linking
e Découplez interface (.h) etimpl. (.c)
e Flags utiles: -Wall -Wextra -Werror -Wconversion -g -02

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Pipeline de compilation (diagramme)

Source .c/.h

Options

include

Preprocessor .i

Compile .s

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

Assemble .o

Link -> Executable /
Shared lib

10

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Undefined Behavior & Pieges courants

e Variables non initialisées, sorties hors-borne, use-after-free
e Débordement d'entiers signés = UB
e Mismatched printf format specifiers = crash / datas corruption

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

11

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Bonnes pratiques & Outils

e Activez -wall -Wextra -Werror , utilisez ASan/UBSan, Valgrind
e Tests unitaires, revue de code, CI/CD
e Documentez et écrivez des commits clairs

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

12

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Checklist rapide (avant push)

Code compile sans warnings

Tests unitaires passent

Pas de fuites détectées par Valgrind / ASan
Coverage raisonnable pour les fonctions critiques

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

13

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Exemples rapides / Mini-exercice

1. Ecrire une fonction int sum(const int *a, size t n) quirenvoie la somme d'un tableau.
2. Testez avec cas vide (n==0), overflow possible (attention au type)

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

14

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Pointeurs avances

e Pointeur vers pointeur, const -correctness et ownership

/* const correctness */
void foo(const int *p); // ne modifie pas *p
void bar(int * const p); // p ne change pas, *p peut changer

/* Pointeur vers pointeur : créer une chaine dupliquée */
char *strdup_safe(const char *s) {

if (!s) return NULL;

size_ t n = strlen(s) + 1;

char *d = malloc(n);

if (!d) return NULL;

memcpy(d, s, n);

return d; // ownership transferred to caller

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

15

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Allocation sécurisée & realloc

* Ne pas perdre le pointeur original si realloc échoue

void *safe_realloc(void *ptr, size_t new_size) {
void *tmp = realloc(ptr, new_size);
if (ttmp) {
// realloc failed, original ptr still valid
return NULL;

}

return tmp;

}

/* Utilisation */
int *arr = malloc(n * sizeof *arr);
int *tmp = safe_realloc(arr, (n2) * sizeof *arr);

if (ttmp) {

free(arr); // gérer 1l'erreur
} else {

arr = tmp;
}

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Gestion d'erreurs (pattern goto cleanup)

e Utiliser un point de sortie unique pour libérer les ressources

int do _work(void) {
int ret = -1;
char *buf = NULL;
FILE *f = NULL;

buf = malloc(1024);
if (!buf) goto out;

f = fopen("data.bin", "rb");
if (!f) goto out;

// ... traiter
ret = @; // succes

out:
if (f) fclose(f);
free(buf);
return ret;

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

17

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Chaines & securite

e Préférer snprintf, strnlen, memmove a strcpy/strcat

char dst[32];
int n = snprintf(dst, sizeof dst, "%s %d", name, value);
if (n < @ || (size_t)n >= sizeof dst) {

// erreur ou troncature

}

/* memmove pour zones qui se chevauchent */
memmove(dst + 2, dst, 10);

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

18

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Exemple : somme sure (détection d'overflow)

e Accumuler dans un type plus large et vérifier

#include <stdint.h>
#include <limits.h>

bool sum_safe(const int *a, size t n, int *out) {
if (!a || 'out) return false;
int64_t acc = 0;
for (size t i =0; i < n; ++i) {
acc += (int64_t)a[i];
if (acc > INT_MAX || acc < INT_MIN) return false; // overflow
}
*out = (int)acc;
return true;

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

19

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Tests rapides (assert / Unity)

e Exemple minimal avec assert

#include <assert.h>

void test sum(void) {

int a[] = {1,2,3};

int out;

assert(sum_safe(a, 3, &out) && out == 6);
}

int main(void) { test_sum(); return 0; }

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com 20

mailto:r.bourebaba@ynov.com

Prérequis & Rappels — Langage C

Besoin d'exemples detailles ?

Propose si tu veux des slides supplémentaires : pointeurs avancés, gestion d'erreurs, patterns mémoire.

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Reda BOUREBABA r.bourebaba@ynov.com

21

mailto:r.bourebaba@ynov.com

