
Le Langage C
class: lead

Support de cours complet — Réda BOUREBABA

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 1

mailto:r.bourebaba@ynov.com


Changelog — V0.0.6

01/02/2026 20:05 — Fusion slides "Organisation de la mémoire" + "Segments mémoire" en une seule slide
pour meilleure compéhension visuelle du layout mémoire (diagramme + description segmentée).

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 2

mailto:r.bourebaba@ynov.com


Objectifs du cours

Maîtriser les fondamentaux du langage C

Comprendre la gestion mémoire et les pointeurs

Savoir manipuler fichiers et structures de données

Pratiquer via TPs et exercices guidés

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 3

mailto:r.bourebaba@ynov.com


Histoire du C

Créé en 1972 par Dennis Ritchie & Ken Thompson

Développé en même temps que UNIX

Stabilisé en 1978 par Kernighan & Ritchie → C K&R

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 4

mailto:r.bourebaba@ynov.com


Architecture CPU/RAM/ROM

lit/écrit lit contrôle

CPU

RAM ROM Entrées / Sorties

Bus

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 5

mailto:r.bourebaba@ynov.com


Premier programme : Hello World

#include <stdio.h>

int main(void){
  printf("Hello World!\n");
  return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 6

mailto:r.bourebaba@ynov.com


Organisation de la mémoire

.text (code) .data (initialized) .bss (uninitialized) heap (malloc) stack (variables locales)

Segments mémoire

.text  : code exécutable

.data  : variables globales initialisées

.bss  : variables globales non initialisées
heap  : allocation dynamique (malloc)

stack  : variables locales et appels de fonctions

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 7

mailto:r.bourebaba@ynov.com


Les types — rappel

Type Taille Plage

char 1 octet -128 à 127

int 4 octets -2 147 483 648 à 2 147 483 647

long 8 octets très grand

float 4 octets 3.4×10⁻³⁸ à 3.4×10³⁸

double 8 octets 1.7×10⁻³⁰⁸ à 1.7×10³⁰⁸

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 8

mailto:r.bourebaba@ynov.com


Types — usage moderne

À l'origine, les types servaient à économiser la mémoire.

Aujourd'hui, la mémoire est abondante :

Utilisez int  pour les entiers

Utilisez float  pour les nombres à virgule

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 9

mailto:r.bourebaba@ynov.com


Contexte historique

En janvier 1973 : premier micro-ordinateur Micral (François Gernelle, R2E)

Basé sur Intel i8008

500 kHz, 8 ko RAM

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 10

mailto:r.bourebaba@ynov.com


Déclarer une variable

int maVariable;  // déclaration

→ Réserve 4 octets en RAM référencés par maVariable

Initialisation :

maVariable = 10;

Ou en une seule ligne :

int maVariable = 10;

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 11

mailto:r.bourebaba@ynov.com


Les constantes

const int NOMBRE_DE_VIES_MAXI = 5;

Convention : écriture en MAJUSCULES

Le compilateur refuse toute modification

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 12

mailto:r.bourebaba@ynov.com


Afficher une variable (printf & formats)

int a = 10;
float b = 12.3;
printf("les valeurs de a:%d, b:%f\n", a, b);

Les variables sont remplacées dans l'ordre d'apparition.

Formats disponibles :

Format Type attendu

%d int

%ld long

%f float/double

%c char

%s chaîne

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 13

mailto:r.bourebaba@ynov.com


Récupérer une saisie utilisateur (scanf)

int age = 0;
printf("Quel age avez vous ? ");
scanf("%d", &age);
printf("Vous avez %d ans\n", age);

Attention : utiliser &age  (adresse de la variable)

Comportement :

Nombre décimal → tronqué (2.4 devient 2)

Chaîne → valeur non modifiée

Débordement possible avec %s  → danger

tape texte
scanf

format
écrit dansUtilisateur Console

Programme C
(scanf)

Variable
en mémoire

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 14

mailto:r.bourebaba@ynov.com


Sécurité — lecture sécurisée

Alternative à scanf pour les chaînes : fgets

char nom[50];
printf("Votre nom : ");
fgets(nom, sizeof(nom), stdin);
// Supprime le \n final
nom[strcspn(nom, "\n")] = '\0';

Évitez absolument :

gets()  — retiré de C11, dangereux
scanf("%s", ...)  sans limite de taille

Préférez : fgets()  avec taille limite

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 15

mailto:r.bourebaba@ynov.com


Opérateurs arithmétiques

Opération Symbole

Addition +

Soustraction -

Multiplication *

Division /

Modulo %

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 16

mailto:r.bourebaba@ynov.com


Raccourcis d'affectation

Raccourci Équivalent

++ , += Incrémentation

-- , -= Décrémentation

*= Multiplication

/= Division

%= Modulo

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 17

mailto:r.bourebaba@ynov.com


Bibliothèque mathématique

#include <math.h>

Fonctions disponibles :

double fabs(double f)  : valeur absolue

double ceil(double f)  : arrondi supérieur
double floor(double f)  : arrondi inférieur
double pow(double nombre, int puissance)  : puissance
double sqrt(double nombre)  : racine carrée
double sin(double radians) , cos , tan  : trigonométrie
double exp(double nombre) , log(double nombre)  : exponentielle, logarithme

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 18

mailto:r.bourebaba@ynov.com


Conditions — if/else

if(/* condition */){
    /* condition vraie */
}else{
    /* condition fausse */
}

Chaînage :

if(/* condition */){
    /* condition vraie */
}else if(/* autre condition */){
    /* autre condition vraie */
}else{
    /* aucune des conditions vraie */
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 19

mailto:r.bourebaba@ynov.com


Opérateurs de comparaison

Symbole Signification

== égal

> supérieur

< inférieur

>= supérieur ou égal

<= inférieur ou égal

!= différent

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 20

mailto:r.bourebaba@ynov.com


Switch... case

int choix = 10;
switch(choix){
    case 1:
        /* choix == 1 */
        break;
    case 10:
        /* choix == 10 */
        break;
    default:
        /* aucun choix valide */
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 21

mailto:r.bourebaba@ynov.com


Boucle while

while (/*condition*/){
    // répéter tant que la condition est vraie
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 22

mailto:r.bourebaba@ynov.com


Boucle do...while

do{
    // je serai exécuté au moins une fois
}while(/*condition*/)

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 23

mailto:r.bourebaba@ynov.com


Boucle for

Au début i  vaut 0, tant que i  est inférieur à 10 on exécute le code puis on ajoute 1 à i .

for(i=0; i<10; i++){
    // code
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 24

mailto:r.bourebaba@ynov.com


TP — Devine un nombre

L'ordinateur tire au sort un nombre entre 1 et 100.
Il vous demande de deviner. Vous entrez un nombre.
L'ordinateur compare et indique si le nombre mystère est supérieur ou inférieur.
Et ainsi de suite, jusqu'à ce que vous trouviez le nombre.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 25

mailto:r.bourebaba@ynov.com


TP — Devine un nombre (squelette)

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(){
    const int MAX = 100, MIN=1;
    srand(time(NULL));
    int randomNumber = (rand() % (MAX - MIN + 1)) + MIN;

    /* à vous !! */
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 26

mailto:r.bourebaba@ynov.com


Les fonctions

Afin de mieux organiser le code, il faut le découper en fonctions.

Structure :

type nomFonction(type parametre1, type parametre2)
{
    // Instructions
}

type  : ce que la fonction renvoie ( int , double , void  si rien)

nomFonction  : même règle que variables (pas d'accents, pas d'espace)

paramètres  : les paramètres passés à la fonction

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 27

mailto:r.bourebaba@ynov.com


Fonctions — exemple

// Déclarer la fonction triple
int triple(int nombre){
    return 3 * nombre;
}

int main(int argc, char *argv[]){
    int entree = 10, nb_triple = 0;
    nb_triple = triple(20);  // nb_triple = 60

    printf("triple est egal à %d", triple(10));
    printf(" le triple de %d est %d\n", entree, nb_triple);
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 28

mailto:r.bourebaba@ynov.com


Fonctions — TP

L'utilisateur saisit les dimensions d'un rectangle → fonction calcule son aire

L'utilisateur saisit les dimensions d'un cercle → fonction calcule son aire

L'utilisateur saisit les dimensions d'un carré → fonction calcule son aire

À partir d'un menu, l'utilisateur choisit :
La figure pour laquelle il veut effectuer un calcul

S'il veut calculer l'aire ou le périmètre

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 29

mailto:r.bourebaba@ynov.com


Les pointeurs — le problème

Les pointeurs sont une spécificité du C/C++.

Problème : une fonction ne peut renvoyer qu'une seule valeur.

Exemple qui ne fonctionne pas :

void makeHumanTime(int h, int m){
    h = m / 60;
    m = m % 60;
}

int main(int argc, char* argv[]){
    int heures = 0, minutes = 90;
    makeHumanTime(heures, minutes);
    printf("%d heures, %d minutes", heures, minutes);
    return 0;
}

Sortie : 0 heures, 90 minutes

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 30

mailto:r.bourebaba@ynov.com


Pointeurs — adresse & valeur

// affichage d'une valeur
int a = 10;
printf("La valeur de a vaut %d\n", a);

// affichage de l'adresse de a
printf("L'adresse de a vaut %p\n", &a);

Sortie :

La valeur de a vaut 10
L'adresse de a vaut 0061FEE4

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 31

mailto:r.bourebaba@ynov.com


Pointeurs — déclaration

int *ptr1, *ptr2, *ptr3;

Initialisation (recommandée) :

int *ptr1 = NULL, *ptr2 = NULL, *ptr3 = NULL;

Affectation :

int age = 10;
int *ptrAge = &age;

ptrAge  est un pointeur sur int  qui pointe sur age .

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 32

mailto:r.bourebaba@ynov.com


Pointeurs — accès à la valeur

int age = 10;
int *ptrAge = &age;
printf("%d\n", *ptrAge);  // affiche 10

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 33

mailto:r.bourebaba@ynov.com


Pointeurs — passage à une fonction

void triple(int *ptrN){
    *ptrN *= 3;
}

int main(){
    int nb = 5;
    int *ptrNb = &nb;
    triple(ptrNb);
    printf("%d\n", *ptrNb);  // affiche 15
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 34

mailto:r.bourebaba@ynov.com


Pointeurs — solution au problème initial

void makeHumanTime(int *pH, int *pM){
    *pH = *pM / 60;
    *pM = *pM % 60;
}

int main(int argc, char* argv[]){
    int heures = 0, minutes = 90;
    makeHumanTime(&heures, &minutes);
    printf("%d heures, %d minutes", heures, minutes);
    return 0;
}

Sortie : 1 heures, 30 minutes

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 35

mailto:r.bourebaba@ynov.com


Opérateur sizeof

L'opérateur sizeof  renvoie la taille en octets :

sizeof(int)  : 4

sizeof(double)  : 8

sizeof(float)  : 4

sizeof(char)  : 1

sizeof(int[10])  : 40

sizeof(int*)  : 4 (ou 8 sur système 64 bits)

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 36

mailto:r.bourebaba@ynov.com


Pointeurs — arithmétique

Affectation :

int age = 10;
int *pAge = &age;
int *pAge2 = pAge;  // pointent sur le même objet

Si P  pointe sur A[i]  d'un tableau :

P+n  pointe sur A[i+n]

P-n  pointe sur A[i-n]

P++  pointe sur A[i+1]

P--  pointe sur A[i-1]

Ces opérations sont valides seulement à l'intérieur d'un même tableau.

&t
(adresse de t)

int t = 10
(1 int = 4 octets)

&t + (sizeof int * indice)
= &t + (4 * 2)

= &t + 8 octets

Accès rapide en O(1)
Pas de boucle
Calcul direct

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 37

mailto:r.bourebaba@ynov.com


Pointeurs — arithmétique (exemples)

int A[10];
int *P;

P = A+9;   /* dernier élément -> légal */
P = A+11;  /* dernier élément + 2 -> illégal */
P = A-1;   /* premier élément - 1 -> illégal */

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 38

mailto:r.bourebaba@ynov.com


Les tableaux

// déclaration
int tableau[4];

// initialisation
int autre_tableau[4] = {10, 33, 12, 5};

// écriture
tableau[0] = 10;
tableau[1] = 23;
tableau[2] = 505;
tableau[3] = 8;

// lecture
printf("%d", tableau[1]);

Accès O(1) : le compilateur calcule directement l'adresse &tableau + sizeof(int)*indice

Tableau en C
tab[10]

Accès : tab[2]

Compilateur calcule
(&tab + sizeof(int)*2)

Une seule opération
Pas de boucle

Temps O(1)
Très rapide

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 39

mailto:r.bourebaba@ynov.com


TP Pointeurs

Soit un tableau d'entiers : 1 2 3 4 1 2 3 4 5

1. Codez une fonction qui renvoie le nombre d'occurrences d'un chiffre donné :

int compte(const int* tab, int longueur_tab, int chiffre_a_compter)

2. Codez une fonction qui remplit un tableau avec les valeurs d'un autre tableau multiplié par une valeur :

void multi(const int* tab_in, int longueur_tab, int* tab_out, int multiplicateur)

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 40

mailto:r.bourebaba@ynov.com


TP Pointeurs (suite)

3. Codez une fonction qui applique une opération (addition, multiplication, soustraction, division) :

void calcul(const int* tab_in, int longueur_tab, int* tab_out, int operation, int valeur)

Astuce : int size = sizeof(tab) / sizeof(int)

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 41

mailto:r.bourebaba@ynov.com


Chaînes de caractères

En C, les chaînes de caractères sont techniquement un tableau de char .

Un ordinateur ne stocke que des nombres → table de conversion ASCII.
http://www.asciitable.com/

int main(int argc, char *argv[])
{
    char lettre = 'A';
    printf("%d\n", lettre);  // affiche 65
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 42

http://www.asciitable.com/
mailto:r.bourebaba@ynov.com


Chaînes — affichage avec printf

int main(int argc, char *argv[])
{
    char lettre = 'A';
    printf("%c\n", lettre);  // affiche A
    return 0;
}

Le format %c  permet d'afficher un caractère.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 43

mailto:r.bourebaba@ynov.com


Chaînes — lecture simple avec scanf

int main(int argc, char *argv[])
{
    char lettre = 0;
    scanf("%c", &lettre);
    printf("%c\n", lettre);
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 44

mailto:r.bourebaba@ynov.com


Chaînes — stockage

Une chaîne de caractères est stockée en mémoire comme un tableau.

Cette chaîne doit être terminée par un \0  (caractère nul).

Donc une chaîne de 5 lettres est un tableau de 6 éléments.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 45

mailto:r.bourebaba@ynov.com


Chaînes — exemple de stockage

int main(int argc, char *argv[])
{
    char chaine[6]; // S-a-l-u-t + \0

    chaine[0] = 'S';
    chaine[1] = 'a';
    chaine[2] = 'l';
    chaine[3] = 'u';
    chaine[4] = 't';
    chaine[5] = '\0';

    printf("%s", chaine);  // affiche Salut
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 46

mailto:r.bourebaba@ynov.com


Chaînes — scanf

Pour lire une chaîne, surdimensionnez le tableau :

int main(int argc, char *argv[])
{
    char prenom[100];

    printf("Comment t'appelles-tu ? ");
    scanf("%s", prenom);
    printf("Salut %s", prenom);
    return 0;
}

Question : Pourquoi manque-t-il le &  devant prenom  ?

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 47

mailto:r.bourebaba@ynov.com


Chaînes — strlen

int main(int argc, char *argv[])
{
    char chaine[] = "Salut";
    int longueurChaine = 0;

    longueurChaine = strlen(chaine);
    printf("La chaine %s fait %d caracteres de long", chaine, longueurChaine);
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 48

mailto:r.bourebaba@ynov.com


TP — Recodez strlen

Recodez la fonction strlen  qui renvoie la taille d'une chaîne de caractères.

https://gitlab.bzctoons.net/bzctoons/tp-c

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 49

https://gitlab.bzctoons.net/bzctoons/tp-c
mailto:r.bourebaba@ynov.com


Chaînes — strcpy

char* strcpy(char* copieDeLaChaine, const char* chaineACopier);

int main(int argc, char *argv[])
{
    char chaine[] = "Texte", copie[100] = {0};

    strcpy(copie, chaine);

    printf("chaine vaut : %s\n", chaine);
    printf("copie vaut : %s\n", copie);
    return 0;
}

char* = strcpy
Source: 'Salut'
5 chars + null

Destination buffer
Doit être ≥ 6 octets

Copie octet par octet
jusqu'au null

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 50

mailto:r.bourebaba@ynov.com


Chaînes — strcat

char* strcat(char* chaine1, const char* chaine2)

int main(int argc, char *argv[])
{
    char chaine1[100] = "Salut ", chaine2[] = "Mateo21";

    strcat(chaine1, chaine2);

    printf("chaine1 vaut : %s\n", chaine1);  // Salut Mateo21
    printf("chaine2 vaut toujours : %s\n", chaine2);
    return 0;
}

char* = strcat
Dest: 'Salut '

6 chars
Source: 'Mateo21'

7 chars + null

Concat: cherche null
dans dest

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 51

mailto:r.bourebaba@ynov.com


Chaînes — versions sécurisées

Problème : strcpy  et strcat  ne vérifient pas les débordements.

Solutions sécurisées :

// strncpy : copie avec limite
strncpy(dest, src, sizeof(dest) - 1);
dest[sizeof(dest) - 1] = '\0';  // garantir terminaison

// strncat : concaténation avec limite
strncat(dest, src, sizeof(dest) - strlen(dest) - 1);

strncpy  ne termine pas toujours par \0  → toujours le faire manuellement.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 52

mailto:r.bourebaba@ynov.com


Chaînes — fonctions utiles

int strlen(const char*)  : longueur
void strcpy(char* dest, const char* src)  : copie
void strcat(char* dest, const char* src)  : concaténation
int strcmp(const char* s1, const char* s2)  : comparaison (renvoie 0 si égales)

int strchr(const char* s, char c)  : rechercher un caractère
int strstr(const char* s1, const char* s2)  : rechercher une chaîne

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 53

mailto:r.bourebaba@ynov.com


TP — Recodez les fonctions strings

Recodez :

strlen  : longueur d'une chaîne
strcpy  : copie d'une chaîne
strcat(const char* A, const char* B, char* dest)  : concaténation
strcmp  : comparaison
strchr  : rechercher un caractère
strstr  : recherche une chaîne dans une autre

Bonus : recodez les fonctions strings de PHP
https://www.php.net/manual/fr/ref.strings.php

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 54

https://www.php.net/manual/fr/ref.strings.php
mailto:r.bourebaba@ynov.com


TP — TDD (Test Driven Development)

Codez un programme qui met en œuvre les fonctions ci-dessus.

Vous devez le coder en TDD et il doit afficher votre score à la fin : 1 point par fonction.

https://gitlab.bzctoons.net/bzctoons/tp-c

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 55

https://gitlab.bzctoons.net/bzctoons/tp-c
mailto:r.bourebaba@ynov.com


Préprocesseur

Le préprocesseur est un programme qui s'exécute juste avant la compilation.

Les lignes commençant par #  sont des directives préprocesseur.

Nous en avons déjà vu une : #include

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 56

mailto:r.bourebaba@ynov.com


Préprocesseur — #include

Pour inclure un fichier fourni par le compilateur :

#include <stdio.h>

Pour inclure des fichiers de votre projet :

#include "monfichier.h"

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 57

mailto:r.bourebaba@ynov.com


Préprocesseur — #include (exemple)

functions.c :

void test1(){
    printf("test1\n");
}
void test2(const char * text){
    printf("%s\n", text);
}

functions.h :

void test1();
void test2(const char * text);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 58

mailto:r.bourebaba@ynov.com


TP — Création de librairie

main.c  : votre main
functions.h  : les prototypes des fonctions
functions.c  : le code des fonctions

int main(){
    test1();
    test2("hello");
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 59

mailto:r.bourebaba@ynov.com


Préprocesseur — #define

#define  est une constante préprocesseur.

#define NB_ITEMS 3
int main(){
    int nb_items = NB_ITEMS;
}

À ne pas confondre avec les constantes ( const ).

Il est aussi possible de définir une constante sans valeur :

#define CONSTANTE

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 60

mailto:r.bourebaba@ynov.com


Préprocesseur — #define (calculs)

#define LARGEUR 500
#define HAUTEUR 100
#define SURFACE LARGEUR * HAUTEUR

Constantes prédéfinies :

__LINE__  : numéro de ligne
__FILE__  : nom du fichier
__DATE__  : date de compilation
__TIME__  : heure de compilation

printf("Erreur a la ligne %d du fichier %s\n", __LINE__, __FILE__);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 61

mailto:r.bourebaba@ynov.com


Préprocesseur — macros

#define BONJOUR() printf("Bonjour");

int main(){
    BONJOUR();
    return 0;
}

Devient après préprocesseur :

int main(){
    printf("Bonjour");;
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 62

mailto:r.bourebaba@ynov.com


Préprocesseur — macros sur plusieurs lignes

#define BONJOUR()  printf("Bonjour\n"); \
                   printf("Tu vas bien ?\n");

int main(){
    BONJOUR();
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 63

mailto:r.bourebaba@ynov.com


Préprocesseur — macros avec paramètres

#define MAJEUR(age)  if(age > 18) \
                         printf("Tu es majeur\n");

int main(){
    MAJEUR(21);
    return 0;
}

Devient :

int main(){
    if(21 > 18)
        printf("Tu es majeur\n");
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 64

mailto:r.bourebaba@ynov.com


Préprocesseur — compilation conditionnelle

#if condition
    /* si la condition est vraie */
#elif condition2
    /* si la condition2 est vraie */
#endif

#define WINDOWS
#ifdef WINDOWS
    /* Code source pour Windows */
#endif
#ifdef LINUX
    /* Code source pour Linux */
#endif
#ifndef CONSTANTE
    /* code exécuté si CONSTANTE n'est pas définie */
#endif

#define
Préprocesseur

#include
Intégration

Compilation Code binaire

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 65

mailto:r.bourebaba@ynov.com


Préprocesseur — exemple conditionnel

#define IS_FRENCH 0

#if IS_FRENCH
    #define TEXT_TEST1 "bonjour\n"
#else
    #define TEXT_TEST1 "hello\n"
#endif

void test1(){
    printf(TEXT_TEST1);
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 66

mailto:r.bourebaba@ynov.com


Typedef

typedef  permet de définir des synonymes de types (alias).

typedef un_type synonyme_du_type;

Exemples :

#define TRUE 1
#define FALSE 0
typedef int BOOL;
BOOL bValue = TRUE;

typedef char* STRING;
STRING sText = "hello";

typedef char* STRLIST[];
STRLIST liste = {"hello", "world"};

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 67

mailto:r.bourebaba@ynov.com


Structures

Une structure est un assemblage de variables de différents types.

Elles sont généralement définies dans un .h .

struct MaStruct{
    int var1;
    int var2;
    double monDouble;
};

Le point-virgule à la fin est obligatoire.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 68

mailto:r.bourebaba@ynov.com


Structures — utilisation

typedef struct MaStruct MaStruct;

struct MaStruct{
    int a;
    int b;
    int c;
};

int main(){
    struct MaStruct ma_struct;
    MaStruct ma_struct2;  // grâce au typedef
    MaStruct ma_struct3 = {0,0,0};

    ma_struct.a = 10;
    ma_struct.b = 20;
    ma_struct.c = 30;
    printf("a:%d, b:%d, c:%d\n", ma_struct.a, ma_struct.b, ma_struct.c);
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 69

mailto:r.bourebaba@ynov.com


Structures — pointeurs

MaStruct ma_struct3 = {0,0,0};
MaStruct *pMa_struct3 = &ma_struct3;

pMa_struct3->a = 10;
pMa_struct3->b = 20;
pMa_struct3->c = 30;
printf("a:%d, b:%d, c:%d\n", pMa_struct3->a, pMa_struct3->b, pMa_struct3->c);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 70

mailto:r.bourebaba@ynov.com


Énumérations

Une énumération est aussi un type personnalisé. Elle contient une liste de valeurs possibles.

typedef enum Volume Volume;
enum Volume{
    FAIBLE, MOYEN, FORT
};
Volume musique = MOYEN;

if(musique == FORT){
    // ...
}

Le compilateur associe un entier : FAIBLE=0 , MOYEN=1 , FORT=2 .

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 71

mailto:r.bourebaba@ynov.com


Énumérations — valeurs personnalisées

enum Volume{
    FAIBLE=0, MOYEN=50, FORT=100
};

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 72

mailto:r.bourebaba@ynov.com


TP — Périmètre d'un polygone convexe

Calculez le périmètre du polygone suivant.

Résultat attendu : 28.21

Vous devez utiliser des structures

Votre code doit comporter au moins une fonction de calcul

Cette fonction doit pouvoir calculer le périmètre de n'importe quel polygone convexe

Les points sont en dur dans le code

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 73

mailto:r.bourebaba@ynov.com


Tableaux de structures — initialisation

struct MaStruct{
    int a, b, c;
};

struct MaStruct mon_tableau[] = {
    {1,2,3},
    {4,5,6},
    {7,8,9},
    {10,11,12}
};

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 74

mailto:r.bourebaba@ynov.com


Allocation dynamique

// allocation d'un bloc
void* malloc(size_t taille_a_allouer);

// allocation + remise à zéro
void* calloc(size_t nombre, size_t taille_d_un_element);

// réallocation d'un bloc existant
void* realloc(void* bloc_existant, size_t taille_a_allouer);

// libération d'un bloc
free(void* bloc_a_liberer);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 75

mailto:r.bourebaba@ynov.com


Allocation dynamique — exemple

int * tableau_dynamic = (int*)malloc(100 * sizeof(int));
if (tableau_dynamic == NULL) {
    printf("Erreur allocation\n");
    return 1;
}

// Utilisation du tableau

free(tableau_dynamic);
tableau_dynamic = NULL;  // bonne pratique

Règles :

Toujours vérifier si malloc  renvoie NULL

Toujours free  après usage → évite fuites mémoire

Mettre à NULL  après free  → évite double-free

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 76

mailto:r.bourebaba@ynov.com


Les fichiers — ouverture

FILE* fopen(const char* nomDuFichier, const char* modeOuverture);

Modes d'ouverture :

r  : lecture seule, le fichier doit exister
w  : écriture seule, crée ou vide le fichier
a  : ajout à la fin, crée le fichier si besoin
r+  : lecture/écriture, le fichier doit exister
w+  : lecture/écriture, crée ou vide le fichier
a+  : lecture/écriture à la fin

En ajoutant un b  : mode binaire.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 77

mailto:r.bourebaba@ynov.com


Fichiers — ouverture/fermeture

int main(int argc, char *argv[])
{
    FILE* fichier = NULL;
    fichier = fopen("test.txt", "r+");

    if (fichier != NULL)
    {
        // On peut lire et écrire dans le fichier
        fclose(fichier);
    }
    else
    {
        printf("Impossible d'ouvrir le fichier test.txt");
    }
    return 0;
}

Fermeture : int fclose(FILE* pointeurSurFichier);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 78

mailto:r.bourebaba@ynov.com


Fichiers — écriture

Écriture d'un caractère :

int fputc(int caractere, FILE* pointeurSurFichier);

Écriture d'une chaîne :

char* fputs(const char* chaine, FILE* pointeurSurFichier);

Écriture formatée (similaire à printf) :

int fprintf(FILE* pointeurSurFichier, const char* format, ...);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 79

mailto:r.bourebaba@ynov.com


Fichiers — lecture

Lecture d'un caractère (renvoie EOF à la fin) :

int getc(FILE* pointeurSurFichier);

Lecture d'une chaîne (s'arrête au \n  ou longueur max) :

char* fgets(char* chaine, int longueur, FILE* pointeurSurFichier);

Lecture formatée (similaire à scanf) :

int fscanf(FILE* pointeurSurFichier, const char* format, ...);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 80

mailto:r.bourebaba@ynov.com


Fichiers — lecture exemple 1

#define TAILLE_MAX 1000

int main(int argc, char *argv[])
{
    FILE* fichier = NULL;
    char chaine[TAILLE_MAX] = "";

    fichier = fopen("test.txt", "r");

    if (fichier != NULL)
    {
        while (fgets(chaine, TAILLE_MAX, fichier) != NULL)
        {
            printf("%s", chaine);
        }
        fclose(fichier);
    }
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 81

mailto:r.bourebaba@ynov.com


Fichiers — lecture exemple 2

int main(int argc, char *argv[])
{
    FILE* fichier = NULL;
    int score[3] = {0};

    fichier = fopen("test.txt", "r");

    if (fichier != NULL)
    {
        while (fscanf(fichier, "%d,%d,%d\n", &score[0], &score[1], &score[2]) != -1){
            printf("Les meilleurs scores sont : %d, %d et %d\n", score[0], score[1], score[2]);
        }
        fclose(fichier);
    }
    return 0;
}

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 82

mailto:r.bourebaba@ynov.com


Fichiers — se déplacer

Renvoie la position du pointeur :

long ftell(FILE* pointeurSurFichier);

Se positionner (fichiers binaires) :

int fseek(FILE* pointeurSurFichier, long deplacement, int origine);

Origine :

SEEK_SET  : début de fichier
SEEK_CUR  : position actuelle
SEEK_END  : fin de fichier

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 83

mailto:r.bourebaba@ynov.com


Fichiers — renommer/supprimer

Renommer :

int rename(const char* ancienNom, const char* nouveauNom);

Supprimer :

int remove(const char* fichierASupprimer);

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 84

mailto:r.bourebaba@ynov.com


TP — Fichiers (carnet de contacts)

Structure :

struct contact{
    char firstname[50];
    char lastname[50];
    int age;
};

Format fichier : CSV contacts.txt

Bob,Marley,75
Alice,Wonder,28

10 points : createContacts.exe  — saisir et enregistrer des contacts

10 points : contactsList.exe  — afficher nombre et liste des contacts

12 points : searchContacts.exe  — recherche par nom/prénom/age

Exemples :

searchContacts.exe "firstname:bob,lastname:marley,age:20"
searchContacts.exe "any:bob"

La recherche est insensible à la casse.

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 85

mailto:r.bourebaba@ynov.com


Arguments en ligne de commande

int main(int argc, char *argv[])

argc  : nombre d'arguments
argv  : liste des arguments (tableau de chaînes)

argv[0]  contient le nom de l'exécutable.

Exemples :

monprog.exe 1 arg1 arg2  → 3 arguments

monprog.exe "1 arg1 arg2"  → 1 argument

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 86

mailto:r.bourebaba@ynov.com


Processus de compilation

Code source
main.c

Préprocesseur
#include #define

Fichier préprocessé
main.i

Compilateur
gcc -S

Assembly
main.s

Assembleur
as

Objet
main.o

Linker
ld

Exécutable
main.exe

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 87

mailto:r.bourebaba@ynov.com


Compiler avec GCC

gcc <liste de fichier source *.c> -o <executable de sortie>

Exemple :

gcc main.c list.c -o list.exe

Flags recommandés :

gcc -Wall -Wextra -Werror -g -O2 main.c -o main

-Wall -Wextra  : active tous les warnings
-Werror  : warnings = erreurs
-g  : symboles de debug (pour gdb/valgrind)

-O2  : optimisation niveau 2

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 88

mailto:r.bourebaba@ynov.com


Debugging avec GDB

Compiler avec -g  pour activer les symboles :

gcc -g -Wall main.c -o main
gdb ./main

Commandes GDB essentielles :

break main          # point d'arrêt sur main
run                 # exécuter le programme
next                # ligne suivante (sans entrer)
step                # ligne suivante (entre dans fonctions)
print variable      # afficher valeur
continue            # continuer jusqu'au prochain break
quit                # quitter gdb

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 89

mailto:r.bourebaba@ynov.com


Valgrind — détection fuites mémoire

valgrind --leak-check=full ./main

Détecte :

Fuites mémoire ( malloc  sans free )

Accès mémoire invalides

Utilisation de mémoire non initialisée

Exemple de sortie :

HEAP SUMMARY:
  in use at exit: 400 bytes in 1 blocks
  total heap usage: 1 allocs, 0 frees, 400 bytes allocated

LEAK SUMMARY:
  definitely lost: 400 bytes in 1 blocks

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 90

mailto:r.bourebaba@ynov.com


Références & ressources

Table ASCII : http://www.asciitable.com/

man pages : man scanf , man fopen , man malloc

Exercices et référentiels fournis dans le cours

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 91

http://www.asciitable.com/
mailto:r.bourebaba@ynov.com


class: small
© C Avancé M2 — Réda BOUREBABA

Le Langage C

C Avancé M2 - V0.0.6 - 01/02/2026 20:05 - Réda BOUREBABA r.bourebaba@ynov.com 92

mailto:r.bourebaba@ynov.com

