
 Compiler son 1er programme C — Debian 12
class: lead

Introduction pratique, pas-à-pas, avec des diagrammes explicatifs

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 1

mailto:r.bourebaba@ynov.com

 Objectifs

Créer et compiler un programme simple en C

Comprendre les étapes (préprocesseur → compilation → assemblage → linking)

Debugger basiquement et automatiser avec Makefile

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 2

mailto:r.bourebaba@ynov.com

 Prérequis

Debian 12 (VM ou machine)

Accès terminal, éditeur (VS Code, nano, vim)

Connexion internet pour installer paquets

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 3

mailto:r.bourebaba@ynov.com

1) Écrire le programme hello.c

#include <stdio.h>
int main(void) {
 printf("Bonjour, monde!\n");
 return 0;
}

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 4

mailto:r.bourebaba@ynov.com

Diagramme : pipeline de compilation

Steps

Source

gcc -c linker

./hellohello.c - code source

hello.o - objet

executable - hello Sortie - Bonjour, monde!

Préprocesseur: #include,
macros

Compilation: .s Assemblage: .o Linking: executable

{.diagram width=70%}

Ce diagramme montre les étapes du code source jusqu'à l'exécutable.
Astuce : ouvrez diagrams/compile_workflow.svg séparément pour voir les détails si besoin.

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 5

mailto:r.bourebaba@ynov.com

2) Installer les outils

sudo apt update

Outils de compilation de base : sudo apt install build-essential make binutils

Debug & mémoire : sudo apt install gdb valgrind

Analyse statique / qualité : sudo apt install cppcheck clang-tidy clang-format

Compilateur alternatif (optionnel) : sudo apt install clang

Vérifier l'installation : gcc --version ; gdb --version ; valgrind --version

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 6

mailto:r.bourebaba@ynov.com

3) Compiler & exécuter

Compiler : gcc hello.c -o hello

Exécuter : ./hello → Bonjour, monde!

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 7

mailto:r.bourebaba@ynov.com

Diagramme : flags GCC & leur utilité

Flags GCC

-Wall: affiche warnings
courants

-Wextra: warnings
supplémentaires

-std=c11: standard C11
-g: symboles debug pour

GDB
-O2: optimisation / -O0:

pas d optim
-pedantic: stricter standard

Explication visuelle des flags courants (-Wall , -Wextra , -g , -O2 , -std=c11).

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 8

mailto:r.bourebaba@ynov.com

4) Makefile : automatisation

CC=gcc
CFLAGS=-Wall -Wextra -std=c11 -g

hello: hello.o
$(CC) $(CFLAGS) hello.o -o hello

hello.o: hello.c
$(CC) $(CFLAGS) -c hello.c -o hello.o

clean:
rm -f hello hello.o

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 9

mailto:r.bourebaba@ynov.com

Diagramme : flux Makefile

rm -f

rm -f

hello.c
hello.o

hello - executable

clean

Visualise les dépendances entre cibles et fichiers objets.
Astuce : ouvre diagrams/makefile_flow_lr.svg séparément pour voir la version détaillée.

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 10

mailto:r.bourebaba@ynov.com

5) Debug & analyse

Compiler pour debug: gcc -g -O0 hello.c -o hello

Installer si nécessaire : sudo apt install gdb valgrind cppcheck

Lancer gdb ./hello — commandes utiles : break main , run , step , next , bt , print var

Vérifier fuites mémoire : valgrind --leak-check=full ./hello

Analyse statique rapide : cppcheck --enable=all .

Utiliser clang-tidy / clang-format : clang-tidy hello.c -- et clang-format -i hello.c

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 11

mailto:r.bourebaba@ynov.com

Diagramme : debug & outils

Compiler avec -g -O0

gdb: breakpoints, step, bt

Valgrind: memcheck

Inspect variables & stack

Rapport de fuites / invalid
reads

Résumé visuel : compiler avec -g , utiliser gdb , puis valgrind si besoin.

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 12

mailto:r.bourebaba@ynov.com

Exercices pratiques

Ex1: Lire un entier et afficher son carré

Ex2: Introduire volontairement un warning et le corriger

Ex3: Ajouter un Makefile et une cible clean

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 13

mailto:r.bourebaba@ynov.com

Ressources & commandes utiles

man gcc , man gdb

Outils : valgrind , cppcheck , clang-tidy

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 14

mailto:r.bourebaba@ynov.com

Fin

Bonne compilation!

Compiler son 1er programme C — Debian 12

C Avancé M2 - V0.0.3 - 01/02/2026 18:03 - Réda BOUREBABA r.bourebaba@ynov.com 15

mailto:r.bourebaba@ynov.com

